3 ways robots can shape the future of architecture

Apr 26, 2018 at 12:00 pm by Press Release

With a nod to Vers Une Architecture, Le Corbusier’s seminal 1923 collection of essays, Towards a Robotic Architecture casts a hopeful eye on the discipline’s technological future. Co-edited by Mahesh Daas, dean of the School of Architecture & Design at the University of Kansas, and Andrew John Wit, assistant professor of digital practice at Temple University, the work frames the possibilities for robots and artificial intelligence (AI) in architectural design. 

Daas has long been fascinated with the philosophical ramifications of AI technology.

If the future progresses as he envisions it, a world in which robots are our co-designers, co-builders, and co-inhabitants is not that far away.

“We are at the dawn of a new era, one in which life-forms of our own creation will walk and work among us,” Daas writes in the opening chapter. “They will help open unprecedented possibilities, challenge our worldviews, redefine the human condition, and, as part of these pervasive transformations, impact architecture.”

robots in architecture pattern wall
Robotic design could integrate geometric complexity, material behavior, and fabrication at scales that match those in nature. Courtesy Neri Oxman.

The digital fabrication of environmentally responsive biomaterials, the emergence of soft robots in assisted-care facilities, the robotic construction of extraterrestrial settlements on Mars—these are just a few of the facets discussed in a brave new world imagined by Daas, Wit, and the contributors in their book.

Check out current Autodesk Promotions Here!

1. AI-Informed Buildings Will Follow Nature’s Design
One unexplored and promising area of research, Daas writes, “lies in robotic buildings, furniture, and interiors.” Buildings, in other words, that behave like robots.

At the MIT Media Lab in Cambridge, Massachusetts, Neri Oxman, Joshua Van Zak, Jorge Duro-Royo, and their research team in the Mediated Matter Groupoffer one example of how architecture might get there, a proof-of-concept prototype that brings living structures into the arena of digital fabrication.

In a chapter titled “Parametric Chemistry: Reverse Engineering Biomaterial Composites for Robotic Manufacturing of Bio-cement Structures Across Scales,” the researchers describe how the reconfiguration of two biopolymers (chitosan and cellulose) allowed them to “tune and optimize” bio-cement structures at scales “that approach—and often match—those of nature.” Imagine a two-story-tall, biodegradable, canoe-shaped lattice structure.

What’s novel about the project, according to Daas, is its use of artificial intelligence to re-create natural processes and properties. “Traditionally, materials have been treated as inert matter,” he says. “With the ability to infuse material with computation, the materials become intelligent in response to their environments or the functions they perform.”

2. Humans and Soft, Squishy Robots Will Work in Harmony
Daas notes that robots are already ubiquitous—on factory floors, in homes, in cars, in bodies, even in children’s playpens. They’re seen in computational technologies, such as building information management (BIM), computer-aided manufacturing (CAM), computer numerical control (CNC) mills, 3D printers, and laser cutters, that have transformed architectural design and digital fabrication. But if Daas’s predictions hold true, robots of the future will be softer, more fragile, and less precise in their movements.

robots in architecture kid shaking robot hand
“Soft robots” will interact more naturally with humans, Daas says.

“It’s an interesting concept, soft robots,” Daas says. “When we think of robots, we tend to imagine hard, metallic components operating at high speed and with great strength. But as humans and other living things engage with robots more often, we will see these robots operate in a much more interactive way. They’ll be able to shake your hand without crushing it.”

And as robots become softer, their surroundings will likely evolve. Instead of being constricted to cages, as the powerful robots of many automotive manufacturing facilities are, Daas says they will roam more freely, working alongside people in softer, gentler environs. “Imagine the world of an infant. What is the world of an infant like? Soft, much more forgiving, less risky. We’ll need to provide that kind of cushion in the environments we create.”

3. Architects Will Help Us Colonize Mars
Robotic construction of human settlements on Mars was once a far-fetched idea. Now a plan is beginning to take shape in robotic deployment models conceived as part of NASA’s Mars 3D-Printed Habitat Challenge. “Going to Mars is impossible without robots,” Daas says. “A lot of what we’re going to be doing will require us to engage extensively with these technologies before setting foot on the planet.”

At the 67th annual International Astronautical Congress in Guadalajara, Mexico, when SpaceX CEO Elon Musk announced the company’s plan to send humans to Mars and start a colony, his architectural vision was of geodesic domes built from indigenous glass panes and carbon-fiber frames. Musk’s scenario is unlikely, at least initially, due to resource costs and other factors, according to Petr Novikov, cofounder and head of R&D at Asmbld in New York and author of Towards a Robotic Architecture’s final chapter, “Robotic Construction on Mars.”

What might hold promise, though, is an igloo-like translucent and fiber-reinforced ice house 3D printed by autonomous ice bots, as outlined in Novikov’s chapter. Known as “Project Mars Ice House,” the structure would serve as a habitable base waiting for astronauts when they arrive.

Mars Ice House
A cutaway view of Mars Ice House. Image courtesy Clouds Architecture Office (Clouds AO) and Space Exploration Architecture (SEArch).

As Novikov explains in the chapter, two types of robots would build the structure. Semi-autonomous robots called WaSiBos would deploy first, dredging ice and Martian regolith and sintering a foundation. Then the ice bots would 3D print the whole structure, adding layers of ice, fibers, and aerogel as they climb.

Whether settlement on Mars becomes a reality, Daas says, the design and construction methods being developed and modeled are encouraging and might be adapted for use in resource-poor areas of this planet.

More importantly, though, it is not a time to fear such interstellar leaps, but to embrace them. “Major technological change has always brought a tremendous amount of anxiety—from steam engines to computers, and so on,” Daas says. “We are witnessing the same level of anxiety with robotics and AI. But we should approach these technologies with cautious optimism. The kind of global challenges we face cannot be dealt with without embracing new knowledge areas, and robotics and AI are an essential part of the solution.”


Nvidia Store